본문 바로가기

전기용어

(29)
전기 감전에 대해서 감전이란 전기가 몸에 흘러 찌릿한 느낌과 강한 충격을 받아 저리는 것을 감전이라고 합니다.정확히는 전류가 신체에 흐르는 것인데요, 인체에 흐르는 전류의 크기에 따라 분류 방식이 다릅니다.감지 전류 (1mA 정도), 경련전류 (5mA ~ 20mA), 그리고 수십 mA의 심실세동 전류 (심장에 다량의 전류가 흐르고 경련을 일으키는 최소 전류 측정 불능) 등으로 나눌 수 있습니다.심장에 심실 세동 전류 이상의 전류가 흐르면 사망 확률이 매우 높습니다.몸이 물에 젖어 있거나, 땀을 흘리는 상태처럼, 전기가 흐르기 쉬운 상태에서 감전하면 신체의 저항이 낮아지기 때문에 그 위험은 더욱 높아집니다. 또한 감전은 취급 전압이 높아질수록 위험합니다.주택 등에서 사용되는 220V에도 충분히 사망할 수 있습니다.전류는 저항..
이온과 플라즈마의 차이 원자의 구조 이온과 플라스마의 상태에 영향을 주는 것은 전자의 상태입니다. 원자는 물질을 구성하고 있는 것들 중 가장 작은 단위가 되는 것입니다. 원자는 원자핵과 마이너스의 전하를 가진 전자로 되어 있고, 원자핵은 플러스 전하를 가지는 양성자와 전하가 없는 중성자로 되어 있습니다. 원자 번호 양성자의 수를 원자 번호라고하며 전하를 갖지 않는 원자에 있어서는 원자 번호는 전자의 수 와 같다.양성자와 중성자의 합계수를 질량수라고 부릅니다. 또한 동일한 원자라도 중성자의 수가 다른 것이 그것을 동위 원소라고 합니다. 전자껍질을 나타내는데 일반적으로 평면도를 사용하지만 실제 전자의 움직임은 입체입니다. 전자의 궤도와 전자의 수용수 전자의 수와 궤도는 원소에 의해 정해져 있습니다.원자핵의 안쪽부터 K, L, M,..
손전등의 구조 손전등은 주로 건전지 등을 사용하여 꼬마전구나 LED를 켜는 휴대용 라이트입니다. 손전등을 영어로는 플래시 라이트라고 합니다. 흔히 플래시라고 부르는데요, 이것은 잘못된 표현입니다. 영국에서는 손전등을 토치라고 한다고 합니다. 최근 손전등은 소비 효율이 좋은 LED와 2차 전지를 사용한 제품이 많아지고 있습니다. 손전등이 빛나는 구조 일반적으로 배터리의 양극은 백열전구에 직접 연결하도록되어 있습니다. 손전등 커버가 금속의 경우 배터리의 마이너스 단자가 스위치를 통해 커버와 연결되어 있습니다. 커버를 이용하는 것이 효과적이기 때문입니다. 또한 배터리의 전압은 1.5V에서 3V 정도이므로 금속 부분에 직접 손으로 만져도 안전성에 문제는 없습니다. 꼬마전구는 극성이 없으므로 배터리의 플러스와 마이너스를 꼬마전..
전자레인지와 인덕션의 원리 예전에는 냉동식품이라고 하면 단순히 오래 보존하기 위한 것이었기 때문에 맛이 없었습니다. 그러나 요즘에는 냉동과 조리 기술이 발달하여 냉동식품이 정말 맛있어지고 있습니다. 당장 편의점에만가도 상당히 만족스러운 식품들이 많습니다. 그 때문에, 더욱 더 전자레인지가 돋보이고 있습니다. 20년 전만 해도 흔하지 않았지만, 지금은 어느 집에서나 쉽게 보급되어 있습니다. 자취하는 사람들에게는 필수품 중의 필수품이라 할 수 있습니다. 물건을 데운다는 의미를 생각하면 보통은 식품에 직접 열을 가해 물건을 데우는 것이 일반적이지만, 전자레인지의 데우는 방법은 전혀 다릅니다. 전자레인지는 마그네트론이라는 2극 진공관으로 자기장 속에서 2450 MHz의 고주파를 발생시키고 있습니다. 이 마그네트론이 발생하는 고주파는 마이..
피뢰침의 원리 여름철에 발생하는 낙뢰사고를 뉴스에서 종종 보셨을 것입니다. 이 낙뢰사고를 대비하기 위한 방안 중 하나가 바로 피뢰침입니다. 피뢰침은 건물이나 건조물을 낙뢰로부터 보호하기 위한 구조입니다. 피뢰침을 설치하여 낙뢰를 유도시키는 것입니다.피뢰침을 설치함으로써 낙뢰를 유도할 수 있지만 낙뢰에 의한 대지 전위 상승이라는 피해도 발생합니다.일반적인 피뢰침이라는 것은 번개를 피하는 것이 아니라, 불러들이는 것으로, 유뢰침(誘雷針) 이라고도 할 수 있습니다. 피뢰침의 원리 피뢰침의 원리는 1749년 미국의 과학자인 벤자민 프랭클린에 의해 자세히 알려졌습니다. 1. 뇌운이 발생하면 구름 상부에 양전하가, 구름 하단에 음전하가 모입니다.구름 속의 물방울과 작은 얼음들이 서로 마찰을 일으키고 전하가 분리되기 때문입니다. ..
리튬 이온 전지의 특징 각종 스마트 기기가 보편화된 요즘, 리튬 이온 전지는 우리 주변에서 많이 사용되고 있습니다. 하지만 어디에 사용되고, 어떤 특징이 있는지 모르는 사람도 많을 것입니다. 가끔 5년이 지난 스마트폰을 여전히 잘 사용하고 있는 사람들이 있습니다. 리튬 이온 전지의 특성에 따라 잘 관리해주면 이렇게 장기간 사용하는 것도 가능합니다. 리튬 이온 전지란? 리튬이온전지란 양극에 리튬금속산화물, 음극에 탄소를 사용하여 전해질을 충전한 구조로 되어 있는 전지입니다. 비슷한 이름에 리튬 전지가 있습니다만, 리튬 이온 전지는 반복해서 충전 및 사용이 가능합니다. 그렇기 때문에 '리튬 이온 2차 전지'라고 불리기도 합니다. 리튬 전지의 경우는 충전을 할 수 없으며, 일회용 전지입니다. 리튬이온 전지는 작지만 에너지 밀도가 높..
페란티 현상이란 페란티 효과란? 페란티 현상은 송배전 선로에서 수전단의 전압이 송전 단 전압보다 높아지는 현상입니다. 일반 송배전 선로에서 전압 강하 즉, 송전 단 전압보다 수전단의 전압이 더 낮아지는 것이 정상입니다. 그러나 페란티 효과는 장거리 송전선 케이블과 같은 긴 계통과 같은 경우에 전선로에 따라 수전받는 쪽에 전압이 송전단 전압보다 더 커질 수 있습니다. 참고로, 페란티 효과의 유래는 이 현상의 발견자인 영국의 전기 기술자 세바스찬 페란티의 이름을 따서 명명되었습니다. 페란티 효과의 원리 송전 단 전압 Es[V], 수전단 전압을 Er[V], 선로 저항 R[Ω], 선로의 리액턴스 X[Ω], 부하에 흐르는 전류를 I[A] 부의 역률 cosθ이라고 칭합니다. 그러면 이때, 전압 강하 값은 다음의 식으로 산출 할 수..
전선의 굵기와 허용 전류 전기 화재는 다양한 원인이 있지만 허용 전류를 초과해서 발생하는 발열로 인한 화재도 빈번히 일어납니다. 그렇기 때문에 전기 공사를 할 때 허용 전류는 중요한 사안인데요, 허용전류와 전선의 굵기의 관계에 대해 알아보겠습니다. 허용전류란? 전기 공사 업무 수행에서 중요한 부분 중 하나가 전선의 허용 전류입니다. 여기서 허용 전류는 전선에 흘릴 수 있는 안전상의 최대 전류를 말합니다. 얇은 배관에 강한 수압으로 물을 흘려보내면 배관에 문제가 생기게 됩니다. 이처럼 전선에 흘릴 수 있는 전류량은 각각의 종류에 따라 최대 값이 정해져 있습니다. 전선에는 당연히 전류가 흐르지만, 저항 값은 0옴이 없습니다. 그렇기 때문에 전류가 흐르면 도체는 자연히 발열합니다. 큰 전류가 흐를수록 발열량이 증가하기 때문에, 도체를..
단상과 3상 전원의 차이 저압 배전 방식에는 단상 2 선식, 단상 3 선식, 삼상 3 선식 등이 있습니다. 일반 가정이나 공장에서 사용되는 배전 방식의 종류와 특징을 알아보겠습니다. 단상과 3상의 차이 단상과 3상은 모두 교류 전원입니다. 교류란 전원의 크기와 방향이 주기적으로 변화하는 전원입니다. 단상은 1개의 파형으로 이루어진 교류 전원, 삼상은 3개의 단상이 조합된 파형으로 이루어진 교류 전원으로 이 상은 120도씩 어긋납니다. 단상에 비해 3상이 더 많은 전력을 보낼 수 있는 장점이 있습니다. 단상과 3 상파형의 배전 방식으로서 단상과 3상에는 여러 종류가 있습니다. 단상 2선식 (1Φ2W) 단상 2선식은 일반 가정에서 많이 사용되고 있는 배전 방식입니다. 사용할 수 있는 전압은 220V 가 되고, 전기 도면에서는 1Φ2..
저항, 절연저항, 접지저항의 차이 저항, 절연저항, 접지저항의 차이에 대한 포스팅입니다. 저항 저항이란 전류의 흐름을 방해하는 정도를 나타내는 지표입니다. 단위는 옴(Ω)이라 불립니다. 저항 값이 높을수록 전류가 흐르기 어려워지고 반대로 낮을수록 전류가 흐르기 쉬워집니다. 저항의 값은 옴의 법칙으로부터 구할 수 있습니다. 옴의 법칙은 다음과 같은 공식입니다. 전압 V = 전류 I × 저항 R (교류의 경우 임피던스) 저항은 전류와 전압 값을 알면 산출할 수 있는 것입니다. 교과서 등에서는 강과 바위로 저항과 전류의 이미지를 설명하고 있는 경우가 많습니다. 물을 전류라고 가정하면 바위에 의해 물의 흐름이 방해됩니다. 마찬가지로 전류도 저항 값이 커질수록 흐르기 어려워지는 것입니다. 절연 저항 집에서 콘센트 근처에 다가가도 직접 손으로 전선..